Skip to content

How to organise your marketing data plan

Man filling up his car with petrol at a petrol station

Share This Post

Why read this? : We look at how organising your marketing data helps you make faster, better decisions. Learn how to scope your data needs and sources. Plus, we share practical examples of using marketing data to improve decision-making. Read this to get more out of your marketing data.

Marketing data’s the fuel which drives the decision-making of your marketing “engine”. You make smarter decisions, when you run your brand on high quality data.

It tells you what’s going on with customers. How your business is doing. You use it to spot opportunities and threats, and set up questions to test with market research. It’s the trigger for discovering the insights which drive your marketing plan and brand activation.

Marketing data - where to start?

It starts with your brand goal and marketing objectives. You need to know where you’re headed to work out what marketing data you need. What do you need to know to hit those targets? Make a list.

Then, think about what marketing data sources you already have. e.g. :-

  • performance reporting systems.
  • past research studies.
  • free, online data reports. 
Person holding glasses in front of them against a blurry street background

For example, sales reports and your profit and loss for financial data. Brand health tracking for customer perception data. Data from online activities like websites, social media and CRM. 

Now, you want to merge these lists together to create 3 new lists :- 

  • If something’s on both lists already, it’s marketing data you need and already have. Brilliant. Keep that.
  • If it’s on the second list, but not on the first, that’s marketing data you have, but don’t need. Put that to the side for now.
  • What’s left are the gaps you have in your marketing data. Things you need to know, but don’t. Let’s look at how you fill those gaps. 

Marketing data you need, but don’t have

You fill in these marketing data gaps by diving into the market research process and writing a research brief.

The data gap is clearly your business problem. That’s the first step in the process. You identify what data you’re missing, and what you’ll do with it when you find it. 

If only I knew “data X”, then I could decide on “marketing activity Y”. 

You then decide on the research approach you need to fill in your marketing data gap. 

Market research process - Flow diagram showing define the business problem - the research brief - the research plan - do the research - analysis an action plan

Secondary research

Secondary research uses existing data from outside your business. e.g. from published sources like government statistic sites, market research companies or other online sources.

For example, say you target a specific age group. You can find data on the size and growth trends of age groups on sites like the Australian Bureau of Statistics.

Or, say you’re a food brand wanting to add new flavours to your range. You could look at search trends via Google Trends to see which flavours people search for.

Much of this data is available free online. Occasionally, you might have to buy a report from a market research company. But that’s the exception, rather than the rule. 

Qualitative research

With qualitative research, you have a “quality” conversation with customers. You talk to them to find out why they do the things they do. It’s helpful to identify the types of marketing data you need. But it can be expensive and the sample sizes are small, so you can’t use it to track on-going performance. 

Quantitative research

Finally, quantitative research gathers data from a large group of customers. Each respondent answers a prescribed set of questions. The group’s big enough to statistically represent the segment you’re interested in. The sample size gives you confidence their answers will tell you what the total segment thinks, feels and does. Quantitative research data is usually the most robust data. 

Just enough data

Gathering marketing data is good. But sometimes you can’t always get what you want. For example, you can’t get marketing data on competitor innovation until it’s in the market.

You also have to factor in cost and timing. If it’s going to be too expensive or take too long, some marketing data isn’t worth paying or waiting for. In an ideal world, you have all the marketing data you need to make decisions. But the reality is you often have to live with gaps in your knowledge. This isn’t a bad thing, as it helps you focus on what’s the most important to find out. 

What you need is to have just enough marketing data to make a decision. Too much data slows you down and distracts you. Too little data won’t help you make a better marketing decision

Decisions driven by marketing data

Marketing data drives 2 types of marketing decision.

First, there’s data to assess a new challenge or opportunity. This drives a go / no go decision on a future project. Then, there’s data to analyse an existing activity or situation. This drives a change / don’t change decision on a current project. 

Marketing data for a future project

Data on future projects is hard to find.

You usually have to start with existing data. You analyse it to predict what’ll happen in the future based on what’s happened in the past. 

This prediction could be informal and involve a lot of guesswork. Or it could be a full-on econometric model (see our e-Commerce forecasting article for more on this). 

For example, say you’re launching an innovation. If it’s completely new to market, how do you reliably work out if customers will buy it? 

Marketing innovation process - formal approach to screening and approval - 6 steps are idea generation, idea screening, business case, develop product, launch, post launch review - with different goals, costs and numbers of ideas

You can ask customers via market research. But future purchase intent is hard for customers to answer. 

It’s often better to look at data on how other similar innovations performed. Use that data to predict how well your new product will do. 

It can help your business case approval if you can show examples of something that’s already worked. Approvers feel more confident in your predictions if past data “proves” there’s a future opportunity. 

Marketing data for an existing project

Existing projects however, will already be generating marketing data.

You use this to evaluate their performance against the project objectives. 

The project brief sets out these objectives. Done properly, these will be SMARTspecific, measurable, achievable, relevant and timely.

Marketing data helps you measure performance. It’s also time specific, so you can look at trends.

Neon sign with a question mark inside a square at the end of a dark corridor

Of course, you also need to work out who will gather, analyse and report all this marketing data. That might be a data manager or analyst, either your own or at the agency. Or in smaller businesses, you do it yourself.

Gathering data means first identifying relevant data sources. Then extracting and collating the relevant marketing data when and where it’s needed. 

Analysing data means looking at trends. Comparing different data sets to look for relationships and explain performance. For example, did sales go up when you spent more on advertising? Did you pull in more customers with that price discount? How did your special offer to your CRM list impact your loyalty rate?

Finally, marketing data reporting means presenting it in a way which answers questions. To highlight opportunities and challenges.

Data can be complex. Data visualisation is a real skill. It has to be clear. Easy to understand and analyse.

This is normally done by building a dashboard. This short, usually one page summary reports performance against the project objectives, so you can track how you’re doing. Let’s look at some examples of what it might cover. 

Most common types of marketing data in a dashboard

Most dashboards combine different data sources. This gives you different perspectives on the performance. What you include varies from business to business. But you’d typically expect to see sales, financial, brand and customer results. 

Sales and financial summary

Most businesses already have some sort of sales and / or financial reporting.

The marketing dashboard pulls the most relevant data from those reports. 

You get a marketing perspective on the numbers.

It should focus on the sales and / or financial project objectives from the brief

Lit up dollar signs on a dark background

This would normally include a total sales line. This shows how actual sales varies against target / forecast sales. Often, there’s a “traffic light” system. Green is good, red is bad, and amber is watch out. 

You can also include costs (especially marketing spends) and profits. Although be wary of including too much. You don’t want to duplicate the profit and loss report. For a one page marketing dashboard, a good rule of thumb is no more than 3 types of sales / financial data. 

Brand health summary

Most businesses also include brand health data in their marketing dashboard. This comes from continuous quantitative research with questions related to the :-

  • brand choice funnel e.g. which of these products are you aware of? which products would you consider? 
  • brand imagery statements e.g. on a scale of 1-5, how do you rate these brands for quality, value, convenience etc?

Like the sales data, you only track measures which are objectives in the brief. You use a similar traffic light system to show if you’re on track or not. 

Again, keep it simple. No more than 3 numbers from the funnel and 3 brand imagery statements. Any more is confusing. Plus, there’s usually a separate brand health report if you need a deeper analysis. 

Customer summary

How you define “customer” depends on your business context. 

For retailer-led businesses, customer data relates to retailer specific measures like distribution levels and share of shelf.

But sell direct to consumer though, and customer data relates to individual marketing interactions with the end shopper. For example, website visits, CRM registrations and loyalty rates. 

For B2B businesses, customer data usually relates to service usage rates and customer satisfaction levels.

Commentary

Your dashboard shouldn’t be all numbers. Leave space to add commentary to explain the numbers. Not everyone will know the context. Commentary helps you get them quickly up to speed.

For example, tell people when new advertising came out, or a sales promotion ran. Tell people when a competitor or a retailer did something unexpected or different. 

Use the commentary to explain why you think changes or performance gaps happened. If you’ve already started to address those, use the commentary to explain the actions already underway. 

Data appendix

The dashboard is usually a single page so it’s easy to understand and discuss. But often, it prompts more questions and requests for more detail.

You should therefore attach an appendix with links to the original data and data sources. This helps anyone reading the report investigate if they have questions. (it also reduces questions for the report writer). 

Example online store dashboard

You find a lot of data dashboards in digital marketing and e-Commerce.

Digital generates a lot of data. Because it’s all online, you can often automate the creation of digital dashboards (using tools like Datorama, for example), rather than produce them manually

So take this e-Commerce dashboard we used for an online store, as an example.

It shows 4 different types of marketing data – campaigns, platforms, operations and sales – that’d be most relevant to track online store performance. 

Example of an e-Commerce dashboard showing results on campaigns, operations, platforms and sales

Campaigns

In campaigns, the data comes from external media sources. Here, we show digital media impressions, click through rates (CTRs) and interactions with social media posts. 

Platforms

In platforms, the data comes from internal data sources, mainly to do with the website. 

So for example, visits and conversions (the percentage of visitors who buy). In this example, we also included Net Promoter Score (NPS), a measure of customer satisfaction. It’s based on asking customers directly how likely they’d be to recommend the brand. 

Operations

In this example operations applies specifically to the order to delivery system. DIFOT stands for Delivered In Full On Time. Supply chain teams use this measure to show what they class as an acceptable delivery. Anything less than 100%, and it means some deliveries were missing items or were delivered late. 

Other common operations measures include the returns, complaints received by customer service and the level of fraudulent payments.

Sales 

In this dashboard example, we chose to focus on sales, not costs and profits. (these were already in the profit and loss). We picked the biggest 3 products in the range for each website. The dashboard reports on the target (the KPI), the actual year to date (YTD) and the percentage variance. 

Organising your marketing data plan

It’s easy to feel overwhelmed by marketing data.

So many different sources. So many updates to each of those sources. You’ve no sooner finished a report, and it feels like the next one’s due. 

When it all starts too feel too much, a quick 5W session is a good way to refocus on the priorities.

The 5Ws are 5 basic questions – why, who, when, where and what – that help organise your thoughts on any complex project. 

Question mark spray painted onto a tree trunk among a wood of trees

(see our 5Ws of idea generation article for an example). 

Why do you need marketing data?

Why helps you refocus on the purpose. If you don’t know why you need it, then it’s hard to stay motivated. Remember, your marketing data helps you understand customers and what’s going on in the market. You need it to make marketing decisions that drive actions. 

Who is responsible for marketing data management?

Gathering, analysing and reporting data all takes time. Someone has to do those tasks. Each task requires different skills. Bigger businesses appoint an analyst with skills across all these areas to lead the process. In smaller businesses, you spread the tasks across different people, or ask your agency for help. 

Most agencies will have some sort of in-house data and analysis support. For expert data and analysis jobs (like the econometric modelling we cover in our e-Commerce forecasting article), you may need to bring in a specialist agency.

When do you need your marketing data?

Another challenge with marketing data is how often you need to refresh it. Today’s data is already out of date by tomorrow. 

Bigger business like supermarkets and banks look at marketing data on a daily or weekly basis. They have teams of analysts to manage the workload. 

Smaller businesses however, usually work with monthly reporting. For example, they produce a monthly marketing performance report with key marketing data. 

Close-up of a clock face showing dial sitting between ten and twelve

The leadership team reviews and discusses this and comes up with actions and decisions. 

The exception might be where something out of the ordinary happens. A stock recall or an availability issue, for example. When this happens, you need more recent marketing data. You set up a more regular (say weekly) reporting cycle until the “event” stops being so extraordinary.

Where do you need it?

The marketing data needs to “live” somewhere so people can access and use it. You and your team need to know where to find it when you need it. 

So, think about how you store and share your data, and your dashboards. Do you use Powerpoint and Excel, for example? Do you print out copies for meetings, or are they all on email? Are they stored in secure online folders and does everyone have the same level of access? 

If you can’t find it, you can’t use it.

What will you do with it?

Finally, and most importantly you have to be clear what you’ll do with your marketing data. As per our market research in the marketing plan guide, you only see the value of data when you do something with it. 

Be clear what decisions you’ll make with your marketing data. What actions you’ll take to improve, change or stop doing things in your marketing plan. Be clear on the decision the marketing data will drive.

Conclusion - marketing data

Many marketers like to talk about the importance of data in marketing. But far fewer know how to gather it, analyse it and report it.

But, you need to do those marketing data skills to fuel your decision-making and actions. 

That goes for both future and existing projects.

Future projects usually drive a go / no go decision. Existing projects are about tracking performance and looking for improvements. 

Man filling up his car with petrol at a petrol station

Create a marketing dashboard for each project with the objectives from the brief. This usually includes commercial, brand health and customer data, as well as commentary to explain the context.

You can use the 5Ws model – why, who, when, where and what – to organise your thinking on marketing data. It helps you remember why you’re doing it, who’ll be responsible, when and where you need it, and most importantly what you’ll do with it.

Check out our secondary data and digital data guides for more on this. Or get in touch if you need help with your marketing data plan.

Photo credits

Petrol Station Fill-up : Photo by Brad Starkey on Unsplash

Glasses : Photo by Josh Calabrese on Unsplash

Question mark sign :  Photo by Emily Morter on Unsplash

Marketing Dashboard : Photo by Carlos Muza on Unsplash

Dollar lights : Photo by Chronis Yan on Unsplash

Question Mark on Tree : Photo by Evan Dennis on Unsplash

Clock : Photo by Agê Barros on Unsplash

Share this content

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest blog posts

Subscribe to get Three-Brains updates